首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1784篇
  免费   182篇
  国内免费   13篇
电工技术   36篇
综合类   8篇
化学工业   553篇
金属工艺   62篇
机械仪表   106篇
建筑科学   73篇
矿业工程   6篇
能源动力   113篇
轻工业   256篇
水利工程   29篇
石油天然气   23篇
无线电   143篇
一般工业技术   273篇
冶金工业   41篇
原子能技术   15篇
自动化技术   242篇
  2024年   5篇
  2023年   37篇
  2022年   59篇
  2021年   141篇
  2020年   133篇
  2019年   159篇
  2018年   174篇
  2017年   161篇
  2016年   165篇
  2015年   85篇
  2014年   145篇
  2013年   214篇
  2012年   132篇
  2011年   120篇
  2010年   84篇
  2009年   63篇
  2008年   29篇
  2007年   15篇
  2006年   14篇
  2005年   9篇
  2004年   12篇
  2003年   5篇
  2002年   5篇
  2000年   2篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1980年   1篇
  1974年   1篇
排序方式: 共有1979条查询结果,搜索用时 31 毫秒
91.
Monodisperse poly(2‐hydroxyethyl methacrylate), p‐HEMA, microspheres in size ranging from 16 to 340 (μm) were synthesized by in situ emulsion photopolymerization of HEMA monomer with polyethylene glycol diacrylate (p‐EGDA) by means of a three‐dimensional microfluidic flow‐focusing device. An aqueous solution of HEMA, p‐EGDA as chain extender and UV‐photoinitiator serving as dispersed phase formed microdroplets in a continuous oil phase mainly consisting of n‐heptane. A downward coaxial orifices design in the device led to confinement of the reaction admixtures thread to central axis of the microchannels. This design strategy could solve the wetting problem of dispersed phase with the microchannels leading to a successful production of monodisperse microspheres with size variation of less than 4%. The effects of concentration of p‐EGDA, surfactant, and flow rate ratios on microsphere size were examined. It was observed that increasing the concentration of p‐EGDA slightly increases the size whereas increasing the flow rate ratios of continuous to dispersed phase effectively decreases the size of microspheres. The rapid continuous synthesis of p‐HEMA based microspheres via the microfluidic route with reliable control over size, size distribution, and composition opens new doors for mass production of biocompatible and degradable polymeric microspheres for enormous biotechnological applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40925.  相似文献   
92.
This work aims to improve the performance of air-breathing microbial fuel cells (MFCs) through using hydrocarbon polymer based nanocomposite proton exchange membranes. Accordingly, nanocomposite membranes based on sulfonated poly(ether ether ketone) (SPEEK) and montmorillonite (MMT) were investigated for such an application. Although the incorporation of MMT into SPEEK membranes resulted in reduced oxygen permeability as well as proton conductivity, but the overall selectivity was found to be improved. MFC tests revealed that using the optimized nanocomposite membrane (SPEEK-70/MMT-3 wt%) results in a considerably higher open circuit voltage (OCV) compared to the corresponding neat membrane. Moreover, it was found that the SPEEK-70/MMT-3 wt% membrane is able to provide about 40% more power output than Nafion®117. On the account of high proton conductivity, low oxygen permeability, high electrochemical performance, ease of preparation and low cost, hydrocarbon based nanocomposite PEMs could be considered as promising electrolytes to enhance the performance of MFCs.  相似文献   
93.
It was shown that the physical filler-polymer and filler–filler interactions, apart from the filler surface chemistry, has a substantial role in controlling the vulcanization kinetics of styrene butadiene rubber filled with nano-silica in a sulfur vulcanization system. Kinetic studies by the oscillating disc rheometer, differential scanning calorimeter, and swelling tests revealed that the vulcanization rate goes through a maximum as loading of silica increases, but conversion in crosslinking continuously decreases as the amount of silica increases. The effect of silica loadings on the vulcanization reactions was linked to the immobilization of rubber chains around particles as well as in a polymer-mediated filler network, which were differentiated by the nonlinear viscoelastic behavior of rubber vulcanizates. By surface modification of nano-silica, the accelerating/decelerating effects of nano-silica on the vulcanization reactions were altered corresponding to the non-linear viscoelastic behavior of the vulcanizates. Therefore, a mechanism was proposed which correlates vulcanization kinetics of rubber to the dynamics of chains influenced by the reinforcing fillers.  相似文献   
94.
In this study, rheological, crystal structure, barrier, and mechanical properties of polyamide 6 (PA6), poly(m‐xylene adipamide) (MXD6) and their in situ polymerized nanocomposites with 4 wt % clay were studied. The extent of intercalation and exfoliation as well as type of crystals, crystallinity, and thermal transitions were investigated using X‐ray diffraction (XRD) and differential scanning calorimetry (DSC), respectively. Dynamic rheological measurements revealed that incorporation of nanoclay significantly increases complex viscosity of MXD6 nanocomposites at low frequencies, which was related to the formation of a nanoclay network and exchange reaction between MXD6 chains. The comparative study of dynamic characteristics (G′ (ω) and G″ (ω)) for aliphatic and aromatic polyamide nanocomposites with their neat resins as well as the relaxation spectra for both polymer systems confirmed the possibility of the aforementioned phenomena. Although, the crystallinity of MXD6 films was lower as compared to PA6 films, the permeability to oxygen was more than 5 times better for the former. Incorporating 4 wt% clay enhanced the barrier property, tensile modulus, and yield stress of PA6 and MXD6 nanocomposite films in both machine and transverse directions without sacrificing much puncture and tear resistances. The PA6‐based films showed higher tear and puncture strength as compared to MXD6 films. POLYM. ENG. SCI., 54:2617–2631, 2014. © 2013 Society of Plastics Engineers  相似文献   
95.
A bi-modal porous structure MCM-41 (BPS-MCM-41) was synthesized and functionalized by 3-[2-(2-Aminoethylamino)ethylamino]propyltrimethoxysilane (TRI); also, its performance in amine grafting and CO2 capturing was compared with that of pore-expanded MCM-41 [1]. To create larger pores beside the mesoporous structure of MCM-41, carbon black nanoparticles were used as the solid template. Characterizing the BPS-MCM-41 using the BET and BJH techniques resulted in the surface reduction of 29.3 percent and volume increase of 68.46 percent. The pore size distribution showed two peaks: a narrow peak at 2.24 nm diameter, which belonged to micelles, and a wide one at about 50 nm due to the presence of used nanoparticles. The functionalization confirmed that BPS-MCM-41 is capable of accommodating a large quantity of amine groups. The CO2 adsorption measurement indicated that internal volume of the adsorbent was a critical factor affecting the adsorption capacity of the amine grafted adsorbents.  相似文献   
96.
Electrocoagulation (EC) is an electrochemical method to treat polluted wastewaters and aqueous solutions. In this paper, the removal of Diazinon was studied by EC on aluminum electrode. The effect of several parameters such as initial concentration of Diazinon, current density, solution conductivity, effect of pH, and electrolysis time were investigated on EC performance. The obtained results showed that the removal efficiency of EC depends on the current density, initial concentration of Diazinon and electrolysis time. The optimum pH is 3 and also the solution conductivity has no significant effect on removal efficiency.  相似文献   
97.
Gas condensate reservoirs present complicated thermodynamic behavior when pressure falls below the dew point pressure, due to fluid dropout and change in the fluid composition. Condensate blockage in the near wellbore region reduces the well deliverability. Mixture composition change in the reservoir makes the interpretation of well tests in gas condensate reservoirs a serious challenge. In this study, at first the capillary number effect and Non-Darcy Flow on compositional simulation of gas condensate reservoirs were investigated and then well test analysis was carried out. The main objective of this work was to examine gas condensate well test analysis using single-phase gas pseudo-pressure and radial composite model assuming capillary number effect and Non-Darcy Flow. For this purpose some fluid samples were selected and results compared. Results indicate that estimation of reservoir properties below the dew point is in good agreement with actual input, particularly for lean fluid samples.  相似文献   
98.
Herein, the poorly water-soluble drug, Tamoxifen (Tmx), was loaded in the amphipathic matrix of human serum albumin (HSA) nanoparticles by a modified desolvation method. In order to enhance the drug loading (DL) and drug entrapment efficiency (DEE) (<2% and 10%, respectively), ultrasonication of Tmx-HSA mixture was performed prior to desolvation process. Tmx loading and entrapment efficiency were optimized by employment of the response surface methodology (RSM)-central composite design (CCD) of experiments. Under the optimum conditions of 1.59 mg Tmx/ml concentration, 7.76 pH and 5 h incubation of HSA-Tmx, the DL of 6.7% and DEE of 74% are achievable. Particles with the average size of 195 nm, zeta potential of −21 mV and polydispersity index of 0.09 were produced under these conditions. A more sustained Tmx release behavior was observed from polyethylene glycol (PEG) conjugated nanoparticles in comparison to the non-PEGylated ones. The short-term stability investigation showed no alteration in physicochemical properties of nanoparticles at 4 and 37 °C, but small increase in nanoparticles size was observed after three months of storage at room temperature. This is the first report for efficient production of a Tmx delivery system based on HSA nanoparticles.  相似文献   
99.
The dominant method of atomizing automotive paint is through the use of rotating bell sprayers. For this class of atomizer, the problem of paint thickness across the bell has been theoretically solved on a representative geometry that includes factors such as fluid flow rate, bell speed, bell cup radius, and fluid properties. It was assumed that the paint film eventually forms uniform ligaments at the bell cup edge that break due to hydrodynamic stability during the paint spray process; thus, creating a characteristic particle size distribution for the spray. These particle size distributions will vary as the spray parameters, specifically fluid flow rate, bell speed, and bell cup radius, vary. The theoretical model that has been developed strongly correlates to the literature data available for paint droplet size from rotary bell atomizers. Expansion of the correlation of the theoretical model to paint appearance wavelength measurements, Wc and Wd, in place of droplet size provides further understanding of the effect of paint spray parameters on paint appearance. Use of these correlations can help to optimize paint appearance and improve paint spray simulation results.  相似文献   
100.
The effect of temperature, WHSV and Fe loading over HZSM-5 catalyst in thermal-catalytic cracking (TCC) of naphtha for the production of light olefins has been studied. The response surface defined by three most significant parameters is obtained from Box-Behnken design method and the optimal parameter set is found. The results show that ethylene increases with temperature, while propylene shows an optimum at 650 °C. Moderate WHSV is favorable for maximum production of light olefins. Addition of Fe to HZSM-5 has a favorable effect on the production of light olefins up to 6% of loading. Excess amount of loading decreases the conversion of naphtha, which leads to a drop in light olefin yields. The yield of light olefins (ethylene and propylene) at 670 °C, 44 hr−1 and 6 wt% Fe has been increased to 5.43 wt% compared to the unmodified HZSM-5 and reaches to 42.47 wt%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号